Geometry as a Computational Engine for Continued
Fractions of Transcendental Logarithms

Narinder Kumar Wadhawan,
e-mail: narinderkw@gmail.com
Civil Servant, Indian Administrative Service, Now Retired,
Haryana, India

Abstract

The purpose of this paper is to introduce a geometric method using a straightedge and compass for
representing the exponent x of an equation, equivalently expressed as x=In(a)/In(b), in the form of a
continued fraction, thereby enabling its computation. Although analogous to the Euclidean algorithm,
this method operates on exponents, with division carried out geometrically rather than symbolically.
The exponent of the equation is determined by locating the two perpendiculars between which the
magnitude b lies. In the geometric construction, perpendiculars are drawn on the hypotenuse AC and
base BC of a right-angled triangle ABC with the right angle at B, where AB=1 and cos(C)=a with a<l.
Since the exponent, being transcendental, is not an integer, the process must be repeated for the
remainder. The reciprocal of the remainder, treated geometrically, again produces a new remainder,
thus continuing the geometric process. This method opens the door to using geometry as a
computational tool, rather than restricting it to its traditional illustrative or grammatical role.

1. Introduction

Going back to our school days, when simplifying fractions was part of the curriculum, we
encountered many operations—addition, subtraction, multiplication, and division—each requiring
careful execution according to a memorised priority rule. This rule was often remembered by the
acronym BADMAS, which determined the order of arithmetic operations: first Brackets (BA),
followed by Division (D), then Multiplication (M), then Addition (A), and finally Subtraction (S).

The combination BA+ D + M + A + S formed the word BADMAS (in Hindi SGHTRI), which
literally means a ‘rogue’ or ‘villain’, and this amusing association helped students memorise the
order of operations. In contrast, continued fractions involve a single operational priority:
computation proceeds from the last term to the first. A simple fraction can be written a = r/q
where r and q are real positive integers. But a fraction can also continue as:

as
a6 + ces

a, +

This expansion may involve a finite number of terms (for rational numbers) or an infinite
sequence (for irrational or transcendental numbers), where a, a,, a;, a,,... are positive integers.
Euclid, in his Elements (c. 300 BCE), introduced an algorithm for computing the greatest common
divisor (GCD or HCF) of two numbers [3, 7]. This algorithm forms the backbone of continued
fraction construction for a ratio a/b.

Briefly stating, the method finds the GCD of r/q by dividing r by g, yielding quotient a,,
and remainder r;. Then ¢ is divided by the remainder r; yielding quotient a; and remainder r,
and the process continues until the remainder vanishes or the division continues indefinitely. The
fraction p/q is then expressed as
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For example, 375/147 is written as a continued fraction using the Euclidean algorithm:

1
2+

P——
14—
4+ —

2+ 5

In published literature, continued fractions have been visualised geometrically to interpret
their properties, their connection to integer lattices, their algorithmic structure, the Farey sequence,
and hyperbolic geometry. However, geometry has not been used to extract continued fractions;
rather, it has served to analyse the fractions derived from the Euclidean algorithms. These visual
interpretations find applications in Diophantine approximation, rational approximation, symmetries,
and pattern analysis [5].

Very little work has explored geometry as a semantic engine for computational purposes.
Foundational contributions in this direction were made by the great geometer René Descartes, who
used geometry to solve algebraic problems. In particular, he considered the problem of generating a
sequence of lengths between two points a and b such that the ratio of two consecutive terms is
constant. To achieve this, he proposed a mechanism involving movable perpendicular linkages
along the base BC and movable rulers on the hypotenuse AC of a right triangle ABC. This device,
now known as Descartes s Logarithm Machine, was designed to trace logarithmic curves [1, 2]. The
concept was later implemented using dynamic geometry software [1]. More recently, independent
semantic constructive approaches, aligned with Descartes’ vision, have appeared in published work
[8]. The method presented in this paper, developed independently, extends this lineage by using
iterative perpendicular constructions within a fixed triangle to compute the continued fraction
expansion of the transcendental exponent x in a* = b —a goal not previously pursued.

In this paper, the geometry using a straightedge and compass is utilised as a computational tool
to generate
l. indefinitely continuing fractions of x given by the equation a* = b, where a and b are
algebraic and # 0,1 or +00 and x is not real rational, and
Il. prove the ratio of two transcendental, i.e. In(a)/In(b) is transcendental when a and b
are algebraic and are # 0, 1 or +oco and x is not real rational.

1.1 Proof Notations and Definitions
Letters like 4,B,C, .., A,B’,C’, ...,or A",B",C", ... while referring to the geometric Figures 1, 2 and
3, denote points. Two alphabets without gap like AB,BC,GH .., AB,BC,GH,..
A'B",B"C",G'H’, ..., D;D,,AsE,, BD, ...denote aline or its segment. Three alphabets without gap
like ABC, DEF .., ABC,D'EF,..,A'B'C",D"EF’, .., denote a triangle. Geometric signs L, z, A,
denote a perpendicular, an angle, and a triangle, respectively. Alphabet p,,,, B,, denote the magnitude
of the mth perpendicular corresponding to cos™(C) and the magnitude of the mth perpendicular
corresponding to 1/cos™(C), respectively

Mathematical signs w0, —, >, <, =, >, <, denote infinity, tending to (approaching), more than,
less than, equal to, equal to or more than, equal to or less than, respectively. Letters
ab,c,..,x,y,2z.. denote real quantities. Real quantities r;,q; wherei = 0, 1, 2, 3, ... denote
positive integers. Cos (C) is the trigonometric ratio of the base to the hypotenuse of a right-angled
triangle that has angle C (in radians) opposite to the angle /2.
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2. Construction and Operation

2.1. Construction of The Right-Angled Triangle ABC with 2C=a radian
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Figure 1 Construction of the right-angled triangle ABC with a line segment AB = 1, and 2C=a
radians

When 0 < a < 1, draw a horizontal line B’C = a unit and construct a perpendicular A’B’. With the
compass centre at C and opening it equal to 1 unit, draw an arc intersecting A’B’ at A’ so that
CA’=1 unit. Extend CA’ to A such that segment AB, perpendicular to CB’, meets it at B and equals
1 unit. Now the right-angled A ABC has cos(C)= a unit, ZABC=n/2 and perpendicular segment

AB=1 unit.
When a > 1, write the equation (1/a)* = 1/b, and construct the right-angled A ABC,

assuming a as 1/a and following the steps as already explained.

2.2. Constructionof (a)*=b
For extracting x in the equation a* = b, equivalently x = In(b)/In(a), a and b must be nonzero

positive real quantities. If a and b both are less than 1, the right-angled triangle for extracting x is
constructible. If a and b both are more than 1; the equation can be writtenas (1/a)* = 1/b and the
right-angled triangle for extracting x is constructible. Ifa < 1and b > 1, then x will be negative
from In(b)/In(a), and the substitution x = —X and B = 1/b transforms the equation to a* =
B. Similarly, ifa > 1and b < 1. Then the substitution A = 1/a and X = —x transforms the
equationto AX = b. In both cases, the right-angled triangle for extracting X (—x) is constructible.
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Figure 2 Displaying the construction of cos™ (C) to cos™ (C)

Given: Segment lengths a, b, and a unit segment.

Construction: To express x geometrically using a straightedge and compass as given by the
equation a* = b, where given 0 < a < 1 and both a and b are algebraic numbers and # 0,1 or +oo
and x is not rational, the geometric construction in Figure 2 is drawn as follows:

I Construct A ABC, with base BC, 2ABC = m/2, perpendicular segment AB = 1. Let
cos(£ACB) = a or simply cos(C) = a as explained in section 2.1.

i. Construct segment BD, L line AC meeting it at D,. Construct segment D;D, L line BC
meeting it at D,. Construct segment D, D5 1 line AC meeting it at D;. Continue this
alternating construction of perpendiculars on lines BC and AC. Let the final segment be
D,_1D, 1 line BC meeting it at D,,. Denote the perpendicular segments BD;, D;D,,
D2D3a- [RE) Dn—an by P1,P2,P3, -, Pn-

iii. Similarly, construct a segment AE; L line CB (extension of line CB) meeting it at E;.
Construct segment E,; E, L line CA (extension of line CA), meeting it at E,. Continue
constructing perpendiculars alternately on CB’ and CA’. Let the final segment be
E,_1E,. Denote the perpendicular segment AE,, E,E,, E,Es,..., E,_{E, by
P, P,,Ps, ..., P,.

iv. Let the m,th perpendicular be suchthat p,, >b and the (m, + 1)th perpendicular
satisfies py 11 < b.

q0
70 —
. — b b r .
V. A new relation emerges: (a)? = — or (—) ® = a, where ry, q, are rational

mo pmo

quantities such that ry, < q,. Lengths of b and a are given and the length of the
perpendicular py,, - can be measured by a compass.

Vi. Repeat the construction of Figure 2 using this new triangle A A'B'C'
with cos(2 A'C'B") = (b/pp,), A'B" = 1, right angle at B'. Apply the same
perpendicular-dropping procedure to extract the next quotient m; .

vii.  Let the m, th perpendicular be such that p,,, > a andthe (m; + 1)th perpendicular

satisfies p,, 41 < a.

1 a
. . . b b .
viii.  This yields a new relation (—)ql =" or (L>T1 = (—) where ry, q, are rational
Pmg Pmq Pmy Pmg
quantities such thatr; < qj;.

iX. Let the m,th perpendicular be such that p,,, > <pi) and the (m, + 1)th

mo

perpendicular satisfies p,, 11 < (L)

Pm,
X. The process will continue ad infinitum and
1
X =mgy+ i
m; + 1
my + my +

where my, m,, ms, .., are positive integers [8].
Ifa— 0ora— 1,thenthe 2C - m/2 or C — 0 and it becomes difficult to draw A ABC and
perpendiculars on base BC and the hypotenuse. In such cases, write the equation a* = b as
()™ = 1/b and locate m, so that P, 4 > 1/b > Py, . Proceed as explained in steps v to x.

2.3. Proof
In A ABD;, 2ABD; = «C, line segment AB = 1, therefore, line segment BD; = cos(C). In
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ABD,D,, 2BD,D, = «C, therefore, line segment D;D, = BD,cos(C) = cos? (C). Similarly, line
segment D,D; = cos> (C), line segment D;D, = cos* (C),.., line segment D,,_,D,, = cos™ (C).
In the same way, line segment AE; = cos™1(C), line segment E;E, = cos~2 (C), line segment
E,D; = cos™3(C),.. line segment E,,_,E,, = cos™ ™ (C).

If we consider cos(C) in our continued fractions, then the length of the first perpendicular
BD, pertains to power 1 of cos(C), length of second perpendicular D, D, to power 2 of cos(C),
length of third perpendicular D, D5 to power 3 of cos(C) and in this way, the length of the nth
perpendicular D,,_; D,, to power n of cos(C).

Similarly, if we consider, 1/cos(C) in our continued fractions, then the length of the first
perpendicular AE; pertains to power 1 of 1/cos(C), length of the second perpendicular E; E, to
power 2 of 1/cos(C), length of third perpendicular E, E5 to power 3 of 1/cos(C) and in this way,
length of the nth perpendicular E,,_; E,, to power n of 1/cos(C).

If 0 < a < 1, then according to the construction a = cos(C) otherwise 1/a = cos(C).
When p,,, > b and p, .1 < b, then b corresponds to the length between p,,,  and p,, .. In other
words, it is a fraction ry /q, more than m, where 1, /q, < 1 so that x = my + 1,/q, and
a™o*7o/d0 = p and that yields a"/% = b/a™o = b/p,, or (b/pmo)qO/p° = a which is again an
equation same in structure as a* = b.

Figure 2 is reconstructed but with cos(C) = b/p,,,. For this equation also, there are
perpendicular segments such that p,,. > a and py, 1 < a.Now q,/ry = m; +1;/q, resulting in

an equation (a/pml)ql/r1 = b/pm,- The process will continue ad infinitum resulting in continued
fractions.

2.3 Explanation and Numerical Illustration

In a* = b, let0 < a < 1. In geometric language, referring to Figure 2, which shows successive
perpendiculars in a triangle ABC with a right angle at B and base BC, cos (C) = a —Which
perpendicular has its length equal to b? If x is an integer, which is easily identifiable by comparing
the length b with that perpendicular. If x is not an integer, we can always find myth and (m, +
1)the perpendicular such that the length of the xth perpendicular lies between them from the
inequalities p, > b and py, +1 < b, where p,, and pp, .1 are lengths of myth and (m, + 1)th

perpendiculars. Let ry/q, be such that

(a)™o*To/%0 = (b), (21)
where 1,/q, < 1 and r, and q, are positive integers and
X =my+ ;_o_ (2.2)

0

In Equation (2.1), m, has already been extracted and r,/q, needs extraction but the
perpendicular corresponding to r,/q, < 1 does not correspond to a nonzero perpendicular. But
q0/71, being more than 1 does correspond to a nonzero perpendicular, hence Equation (2,2) is written

xX=my+ %. (2.3)
To

This highlights the continued fraction form leading to the extraction of q, /1, by rewriting

Equation (2.1) in exponent g, /1, :
q0
frO = g, . N -

where f =b/py,, g=a, pm, =a™ and values of b and a are given, thus facilitating the
construction of a right-angled triangle AB'C’ with cos(C') = f = b/py,, (base p,,, and hypotenuse
b). Let m,th and (m, + 1)th perpendicular such that the magnitude of the (q,/ry)th perpendicular
lies between them from the inequalities p,, > g and p, .1 < g, where p, and p, ., are
lengths of m;th and (m; + 1)th perpendiculars. Let r; /q; be such that
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(Ot = (g), (2.4)
where r; /q; < 1 and r; and g, are positive integers. Thus, the value of an integer m, is extracted
and the value of g,/r; > 1 needs extraction. Consequently, the equation (2.4) takes the form

1

X =my+ — 1
my + W
n
Proceeding in this manner, m,, ms, ..., m; can be extracted, yielding
1
X =mgy+ 1 )
mt+
m2 + m3 +

and the larger the value of j, the more precise the result becomes.

2.3.1 Numerical Illustration
Let the given equation be 2* = 5. This can be written (1/2)* = (1/5) so that we may construct a
triangle ABC with base BC, AB = 1,angle B = n/2 and cos(C) = 1/2. From geometry, x lies
between the 2" and the third perpendicular, and that makes m, = 2 and (1/2)%*7/9% = 1/5 or

1

since 15 /q, < 1 and does not correspond to any perpendicular 1, 2, 3,...That needs the extraction of
qo/7o > 1 and writing (1/2)%*70/9% = 5 in terms of the exponent of 1, /q, :

%
1 To . 1
(sz) B 2 ’

where the magnitude of p, is known from the construction. From the comparison of lengths of

perpendiculars, it is found that % lies between the 3™ and 4™ perpendiculars in the triangle with
cos(C) = 1/5p, and that extracts m; = 3. That yields

X=24+——
1I
3+ g

n

leading to the equation (1/5p,)3*1/91 = 1/2 or

< 1 >Q1/T1 1
ZP; B 5p,’

where p; is the magnitude of the third perpendicular. From the comparison of lengths of
perpendiculars, it is found that 1/5p, lies between the 9th and 10th perpendiculars in the triangle
with cos(C") = 1/5p, and that extracts m, = 9. That yields

2+ 1
x = _—
34 11
9+E
r
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Stopping at the third stage and neglecting r,/q,, x calculates as 2.321428571 whereas the
actual x is 2.321928095 within .021 percent. That demonstrates the validity of the method.

2.4. Computation and Construction of e* = b by Geometric Construction

2.4.1. Computation and Construction of Euler Number e

Euler number is transcendental and not constructible by using a straight edge and compass.
However, it can be approximated geometrically using the formula e equals, limit n — oo,
(1+1/n)"orn—- o, e= {n/(1+n)} ™ Set cos(C) = n/(n+ 1) aright-angled triangle ABC
can be constructed with base BC = n and hypotenuse AC = n + 1 with ZACB — 0. Althoughn —
oo, is not practically feasible; an approximation can be obtained by choosing n as large as
permitted by the size of the drawing sheet or the precision of the computing device (if implemented
in software).

Figure 3 Displaying construction and computation of e

A brief description of the construction is as follows: Referring to Figure 3, construct triangle
ABC with cos(£ACB) = n/(n + 1). From A, drop a perpendicular AE; to CB extended, meeting it
at E;. From E;, drop a perpendicular E, E, to CA extended, meeting it at E,. From E,, drop a
perpendicular E, E; to CB extended, meeting it at E5. Continue this process alternately until the nth
perpendicular E,_; E,, from E,_; meets CB extended at E,,. From similar triangles ABC, ABE,,
E,E,E5 soon, line segment AE; = cos™1(C), E;E, = cos™2(C), E,E3 = cos™3(C), ..., Ep_1E, =
cos(C), since line segment AB = 1. Therefore, E,,_1E, = cos™(C) = {n/(n+ 1)} ™.

2.4.2. Computation and Construction of e* = b
The geometric construction and computation of e* = b follow the same procedure as that for a* =
b (Sections 2.2 and 2.4), with the following substitutions:

» Replace a by 1/e,
 Set cos(£ACB) =1/e.

Repeating the full details here would duplicate Sections 2.2 and 2.3 in toto and is therefore

omitted. For the geometric construction and approximation of Euler’s number e, refer to Section
2.4.1 and Figure 3.

3. Comparison With the Euclidean Algorithm
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3.1 Euclidean Algorithm
I The Euclidean algorithm is a general method applicable to fractions r/q where the
process of division of g by r is possible and g, r are positive integers.

i It divides g by r so thatg =m, +T71 = my + + Now , dividesr so thatri =m; +
H 1
% = m, + v, thus Z =m, + 1 . Continuing the process, g can be written

T- S
1 2 177

where m,, m,, ms,.., are positive integers.

iii. The algorithm’s applicability is limited to real rational quantities and polynomials. It can
be made applicable to other functions when written in polynomials or in numerical
values.

3.2 Geometric Method

I The geometric method is a special method for continued fraction for obtaining the
continued fraction of x in the equation a* = b or equivalently x = In(b)/In(a).

i. It uses the theory that in a right-angled A ABC with base BC, ZABC = m/2,
perpendicular segment AB=1 if from point B, a perpendicular BD, is drawn on line AC,
D,D, on BC, D,D; on AC, then BD; = cos(C), D;D, = cos*(C), D,D; =
cos?(C),..,D,_1D, = cos™(C). Thus, a perpendicular segment denotes to a specific
value of k in cos*(C).The given value of b can then be found to exist between two
perpendicular say my and my + 1 where b = my, + 1,/q,.-

iii. Thus b which is a fraction with integer m, (quotient) and as r,, /q, remainder. It is
tantamount to the division of the numerator by the denominator (of b).

Iv. Quotient (m,) and reminder (r; /q,) of fraction q,/r, are extracted geometrically by
constructing a right-angled triangle with an angle 2C corresponding to cos(C) =
b/pm,- The process is continued.

V. The geometric method is the same in spirit as the Euclidean algorithm, with the
difference that it involves exponents and the division takes place geometrically rather
than symbolically.

4, Natureof xina* =bande*=»>b

Lemma 4.1: (Classical corollary of the Gelfond—Schneider theorem): If x in a* = b or equivalently
x = In(b)/In(a), is not rational, and a > 0 and b > 0 are algebraic with a # 1, and b # 1. Then
X s transcendental.

Proof: The following proof is a direct application of the classical Gelfond—Schneider theorem
(proved independently by A. O. Gelfond in 1934 and T. Schneider in 1935 [4]. If x is not rational,
then there are two remaining possibilities, either x is algebraic, irrational, or transcendental.

Case 1: x is algebraic irrational.

By the Gelfond—Schneider theorem, if a is algebraic with a # 0, 1 and x is algebraic
irrational, then a* is transcendental [4]. But we are given that b is algebraic, so a* = b cannot be
transcendental. This contradiction shows x cannot be algebraically irrational.

Also x is not rational according to the given condition. Therefore, x must be transcendental.
This proves lemma 4.1.
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Clarifying remark

The status of results obtained from general operations (addition, subtraction, multiplication,
division) on two different transcendental numbers cannot be uniformly determined. However, the
imposition of specific conditions that x in a* = b is not rational, and a > 0 and b > 0 are algebraic
with a # 1, and b # 1 makes x transcendental as a corollary of Gelfond—Schneider theorem [4].

Lemma 4.2: Using an unmarked straightedge and compass, let A ABC be a right triangle

with £ABC = n/2, base BC, and perpendicular AB = 1. From point B, drop a perpendicular BD,
to hypotenuse AC meeting it at D,. Then, from D, drop a perpendicular DD, to BC meeting it

at D, ; from D,, drop a perpendicular D, D5 to AC meeting it at D3, and continue this process
alternately. Then, for any integers n > m > 3 and p > q > 3, the ratio of two transcendental
logarithms satisfies

In (Dp—le—3) T p—q
q—-1Yq-3

Proof: Referring to Figure 2, the segment lengths on the hypotenuse AC are given by:
Dyp_1Dy_3 = Dp_, Dy _3sin(C) = sin(C)cos™ 2(C),
D;y—1Dy_3 = Dpy_5D,_3sin(C) = sin(C)cos™ 2(C),

Thus,

Dn—1Dn-3 _ cos™™(C)
Dmpm—1Dn—3 ’

Taking the natural logarithm yields:

—m = 1 Dp—1Dn—3

n—m= In(cos C) In (Dm_an_g)' (4-1)
o 1 Dp_1Dp_3

P=aq= In(cosC) In (Dm_an_3)' (4~2)

Dividing (4.1) by (4.2), we obtain

Dp—1Dn-3
n-m — ln(DyZ_lD;lfl_3) (4 3)
p—q zn(_DP—le—s)' :
Dg-1Dg-3

although the numerator and denominator of the right-hand side of Equation (4.3) are both
transcendental. That proves Lemma 4.2.

Remark: By Lemma 4.1, when x = In(b)/In(a), is not rational,and a > 0 and b > 0 are algebraic
with a # 1,and b # 1, then x is transcendental. However, in the present construction, the bases are
geometrically related via a = b* for some integer k , due to the uniform scaling by cos C. This
structural constraint forces the ratio of two transcendental logarithms to be rational — a non-trivial
consequence of the geometry. This rational equality arises purely by construction: the iterative
perpendicular process imposes algebraic dependence among the bases via uniform scaling by cos
C, independent of general transcendence theory.
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Lemma 4.3 (Classical corollary of the Lindemann—-Weierstrass theorem): If algebraicbh > 0isa
real algebraic number with b # 1, then x ine* = b, is transcendental.

Proof:

The following proof is a direct application of the classical Lindemann—\Weierstrass theorem (proved
by F. Lindemann in 1882 and generalised by K. Weierstrass in 1885): If a is a non-zero algebraic
number, then e is transcendental.

Suppose x is rational, then b = e* is transcendental, contradicting to the given statement
that b is algebraic. Thus, x can not be rational.

Suppose x is algebraic, since x is a non-zero algebraic number, e*is transcendental (by the
Lindemann—Weierstrass theorem), again contradicting that p is algebraic. Thus, x cannot be
algebraic. The only remaining possibility is that x is transcendental. This proves Lemma 4.3.

5. Convergence and the Rate of Convergence

It is proved in Section 3 that the continued fraction generated by the geometric method is the
standard simple continued fraction of the transcendental number x = log,b. Since x is irrational
(in fact, transcendental by Lemma 4.1), classical theory guarantees that:

I The value of the continued fraction generated by the extracted quotients converges to x.

(see [6]).

il. The error after n steps is less than 1/ klz1 ,where k, is the denominator (see [6]).

1ii. The denominators grow at least exponentially with n , ensuring rapid convergence (see
[6]).

These are well-known properties of continued fractions for any irrational number. The
novelty of this work lies not in discovering new convergence behaviour, but in constructing the
partial quotients geometrically — using only compass and straightedge within a single right
triangle. Where the Euclidean algorithm divides numbers symbolically, this method divides
exponential scales geometrically, achieving the same mathematical outcome through pure
construction.

6. Results and conclusions
The exponentiation of a real quantity awhen 0 < a < 1i.e. a*, for —oo < x < 400 can be
expressed geometrically in the form of cos*(C) using a straightedge and a compass. Construct a
right-angled A ABC, with base BC, ZABC = m/2, and perpendicular line segment AB=1. Let
cos(ACB) = a. Successive perpendiculars are drawn on base BC and hypotenuse AC. Denote
BD,,D;D,,D,Ds,.., as first, second, third perpendicular... with lengths p;, p,, p3, ... then
cos*(C) = a* =p,.

If x is not an integer, suppose it lies between m,,, and m, + 1 where m,, is an integer. This
can be detected when the magnitude of b in the equation a* = b satisfies py, <b < py 4+1- This
identifies m,. Now consider x = m, + 1, /q,, Where the fraction ry/q, < 1. Then a™o*To/do=h or

(Pm,@"/%0) = b
or
(b/me)QO/TO =a
This equation is analogous to a* = b. The integer m, in the equation q,/rp = m; + 11 /q4

can be found using the same process as for m,. Similarly, m,, m5,m, can be extracted, resulting in
transcendental
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where my, m;, m,, .. are positive integers including zero. This continued fraction is infinite
and non-terminating [8]. Therefore, the value of the transcendental x can only be approximated by
truncating the fraction at a finite number of terms, according to the desired precision. Thus, the
geometric construction extracts the terms of the continued fraction and approximates the
transcendental value but fails to yield its exact value. Like all other methods, it is a method of
approximation.

We demonstrate how approximation is done in [S1]. In summary, for determining x by

continued fraction, both a and b are assumed to satisfy 0 < a < 1and 0 < b < 1. The interactive
figure displays the values of m,, m; and m, for the continued fraction x = m, + —

my+—-.
my

where x = and letting k, = 1 the

In(b) - _ _ 1 _ 1
@ Writing x, = my, x; = mg + my X2 =M + m1+m%,
denominator of x,, k; = m; the denominator of x;, and k, = mym, + 1 the denominator of x,

and actual x = EZ% it can be observed numerically from the interactive figure, in agreement with

. . 1 1 1
the known bounds for continued fractions, that [x — x| < P [x —xq] < =z and [x — x,| < 7 It
0 1 2

can further be observed that k,, grows exponentially with n, ensuring rapid convergence of the
continued-fraction approximation.

The interactive file not only provides continued fractions approximations for a* = b
(equivalently x = In(b)/In(a), but also stimulates curiosity and a sense of wonder, showing how
calculations that normally require logarithmic tables or calculators can be performed geometrically
using right-angled triangles and perpendiculars. Observing this simple yet revealing method
encourages one to explore whether the same approach can be applied to other problems, thereby
planting the seed for further investigation and research.

7. Supplementary Electronic Material
[ICFE] An interactive HTML file.
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