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Abstract 
The purpose of this paper is to introduce a geometric method using a straightedge and compass for 

representing the exponent x of an equation, equivalently expressed as x=ln(a)/ln(b), in the form of a 

continued fraction, thereby enabling its computation. Although analogous to the Euclidean algorithm, 

this method operates on exponents, with division carried out geometrically rather than symbolically. 

The exponent of the equation is determined by locating the two perpendiculars between which the 

magnitude b lies. In the geometric construction, perpendiculars are drawn on the hypotenuse AC and 

base BC of a right‑angled triangle ABC with the right angle at B, where AB=1 and cos(C)=a with a<1. 

Since the exponent, being transcendental, is not an integer, the process must be repeated for the 

remainder. The reciprocal of the remainder, treated geometrically, again produces a new remainder, 

thus continuing the geometric process. This method opens the door to using geometry as a 

computational tool, rather than restricting it to its traditional illustrative or grammatical role.  

 

1. Introduction   
Going back to our school days, when simplifying fractions was part of the curriculum, we 

encountered many operations—addition, subtraction, multiplication, and division—each requiring 

careful execution according to a memorised priority rule. This rule was often remembered by the 
acronym BADMAS, which determined the order of arithmetic operations: first Brackets (BA), 

followed by Division (D), then Multiplication (M), then Addition (A), and finally Subtraction (S). 

The combination BA + D + M + A + S formed the word BADMAS (in Hindi बदमाश), which 

literally means a ‘rogue’ or ‘villain’, and this amusing association helped students memorise the 
order of operations. In contrast, continued fractions involve a single operational priority: 

computation proceeds from the last term to the first. A simple fraction can be written 𝑎 = 𝑟/𝑞 

where 𝑟  and 𝑞 are real positive integers. But a fraction can also continue as: 

             

𝑎 = 𝑎0 +
𝑎1

𝑎2 +
𝑎3

𝑎4 +
𝑎5

𝑎6 + ⋯

 

This expansion may involve a finite number of terms (for rational numbers) or an infinite 

sequence (for irrational or transcendental numbers), where 𝑎, 𝑎0, 𝑎1, 𝑎2 ,… are positive integers. 
Euclid, in his Elements (c. 300 BCE), introduced an algorithm for computing the greatest common 

divisor (GCD or HCF) of two numbers [3, 7]. This algorithm forms the backbone of continued 

fraction construction for a ratio 𝑎/𝑏. 

Briefly stating, the method finds the GCD of 𝑟/𝑞 by dividing 𝑟 by 𝑞, yielding quotient 𝑎0 

and remainder 𝑟1 .  Then q is divided by the remainder r1, yielding quotient 𝑎1  and remainder r2   
and the process continues until the remainder vanishes or the division continues indefinitely. The 

fraction 𝑝/𝑞 is then expressed as  

𝑎0 +
𝑎1

𝑎2 +
𝑎3

𝑎
4+

𝑎5
..

. 
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For example,  375/147 is written as a continued fraction using the Euclidean algorithm: 

                                 

2 +
1

1 +
1

1 +
1

4 +
1

2 +
1
2

. 

In published literature, continued fractions have been visualised geometrically to interpret 

their properties, their connection to integer lattices, their algorithmic structure, the Farey sequence, 

and hyperbolic geometry. However, geometry has not been used to extract continued fractions; 
rather, it has served to analyse the fractions derived from the Euclidean algorithms. These visual 

interpretations find applications in Diophantine approximation, rational approximation, symmetries, 

and pattern analysis [5].  

Very little work has explored geometry as a semantic engine for computational purposes. 

Foundational contributions in this direction were made by the great geometer René Descartes, who 
used geometry to solve algebraic problems. In particular, he considered the problem of generating a 

sequence of lengths between two points 𝑎 and 𝑏 such that the ratio of two consecutive terms is 

constant. To achieve this, he proposed a mechanism involving movable perpendicular linkages 

along the base BC and movable rulers on the hypotenuse AC of a right triangle ABC. This device, 
now known as Descartes’s Logarithm Machine, was designed to trace logarithmic curves [1, 2]. The 

concept was later implemented using dynamic geometry software [1]. More recently, independent 
semantic constructive approaches, aligned with Descartes’ vision, have appeared in published work 

[8]. The method presented in this paper, developed independently, extends this lineage by using 

iterative perpendicular constructions within a fixed triangle to compute the continued fraction 

expansion of the transcendental exponent  𝑥 in 𝑎𝑥 = 𝑏 —a goal not previously pursued. 
In this paper, the geometry using a straightedge and compass is utilised as a computational tool 

to generate  

I. indefinitely continuing fractions of 𝑥 given by the equation 𝑎𝑥 = 𝑏, where 𝑎 and 𝑏 are 

algebraic and ≠ 0, 1 or ±∞ and 𝑥 is not real rational, and  

II. prove the ratio of two transcendental, i.e.  𝑙𝑛(𝑎)/𝑙𝑛(𝑏) is transcendental when 𝑎 and 𝑏 

are algebraic and are ≠ 0, 1 or ±∞ and 𝑥 is not real rational.  

 

1.1 Proof Notations and Definitions 

Letters like 𝐴, 𝐵, 𝐶, …, 𝐴’, 𝐵 ’, 𝐶’ , …, or 𝐴’’, 𝐵 ’’, 𝐶’’, … while referring to the geometric Figures 1, 2 and 

3, denote points. Two alphabets without gap like 𝐴𝐵, 𝐵𝐶, 𝐺𝐻 ,.., 𝐴’𝐵 ’, 𝐵 ’𝐶’, 𝐺’𝐻’, … 

𝐴’’𝐵 ‘’, 𝐵 ’’𝐶’’, 𝐺‘’𝐻’’, … , 𝐷1𝐷2, 𝐴3𝐸4, 𝐵𝐷1 … denote a line or its segment. Three alphabets without gap 

like 𝐴𝐵𝐶, 𝐷𝐸𝐹 …,  𝐴’𝐵 ’𝐶’, 𝐷 ’𝐸’𝐹 ’, …, 𝐴’’𝐵 ’’𝐶’’, 𝐷 ’’𝐸’’𝐹’’, …, denote a triangle. Geometric signs ⊥, ∠, ∆, 

denote a perpendicular, an angle, and a triangle, respectively. Alphabet 𝑝𝑚, 𝑃𝑚 denote the magnitude 

of the 𝑚𝑡ℎ perpendicular corresponding to 𝑐𝑜𝑠𝑚(𝐶) and the magnitude of the 𝑚𝑡ℎ perpendicular 

corresponding to 1/𝑐𝑜𝑠𝑚(𝐶),  respectively  

          Mathematical signs ∞, →, >, <, =, ≥, ≤, denote infinity, tending to (approaching), more than, 

less than, equal to, equal to or more than, equal to or less than, respectively. Letters 

𝑎, 𝑏, 𝑐, … , 𝑥, 𝑦, 𝑧, . ., denote real quantities.  Real quantities 𝑟𝑖 , 𝑞𝑖 where 𝑖 = 0, 1, 2, 3, … denote 

positive integers. 𝐶𝑜𝑠 (𝐶) is the trigonometric ratio of the base to the hypotenuse of a right-angled 

triangle that has angle C (in radians) opposite to the angle π/2.   
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2. Construction and Operation 

 
2.1. Construction of The Right-Angled Triangle ABC with ∠C=a radian 

Figure 1 Construction of the right-angled triangle ABC with a line segment 𝐴𝐵 = 1, and ∠C= 𝑎 

radians 
 

When 0 < 𝑎 < 1, draw a horizontal line 𝐵’𝐶 = 𝑎 unit and construct a perpendicular 𝐴’𝐵’. With the 

compass centre at C and opening it equal to 1 unit, draw an arc intersecting A’B’ at A’ so that 

CA’=1 unit. Extend CA’ to A such that segment AB, perpendicular to CB’, meets it at B and equals 

1 unit. Now the right-angled ∆ ABC has cos(C)= 𝑎 unit, ∠ABC=π/2 and perpendicular segment 
AB=1 unit.  

When 𝑎 > 1,  write the equation (1/𝑎)𝑥 = 1/𝑏 , and construct the right-angled ∆ ABC, 

assuming 𝑎 as 1/𝑎 and following the steps as already explained.  

 

2.2. Construction of (𝒂)𝒙 = 𝒃 

For extracting 𝑥 in the equation 𝑎𝑥  =  𝑏, equivalently 𝑥 =  𝑙𝑛(𝑏)/𝑙𝑛(𝑎), 𝑎 and 𝑏 must be nonzero 

positive real quantities. If 𝑎 and 𝑏 both are less than 1, the right-angled triangle for extracting 𝑥 is 

constructible. If 𝑎 and 𝑏 both are more than 1; the equation can be written as (1/𝑎)𝑥  =  1/𝑏 and the 

right-angled triangle for extracting 𝑥 is constructible. If 𝑎 <  1 and 𝑏 >  1, then x will be negative 

from 𝑙𝑛(𝑏)/𝑙𝑛(𝑎), and the substitution 𝑥 =  −𝑋 and 𝐵 =  1/𝑏 transforms the equation to 𝑎𝑋  =
 𝐵. Similarly, if 𝑎 >  1 and 𝑏 <  1.  Then the substitution 𝐴 =  1/𝑎 and 𝑋 =  −𝑥 transforms the 

equation to 𝐴𝑋 =  𝑏. In both cases, the right-angled triangle for extracting 𝑋 (−𝑥) is constructible. 
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Figure 2 Displaying the construction of 𝑐𝑜𝑠−𝑛 (𝐶) to 𝑐𝑜𝑠𝑛 (𝐶) 

 

Given: Segment lengths 𝑎, 𝑏, and a unit segment.  

Construction: To express x geometrically using a straightedge and compass as given by the 

equation 𝑎𝑥 = 𝑏, where given 0 < 𝑎 < 1 and both 𝑎 and 𝑏 are algebraic numbers and ≠ 0, 1 or ±∞ 

and 𝑥 is not rational, the geometric construction in Figure 2 is drawn as follows: 

i. Construct ∆ ABC, with base BC,  ∠ABC = π/2, perpendicular segment AB = 1. Let 

𝑐𝑜𝑠(∠𝐴𝐶𝐵) = 𝑎 or simply 𝑐𝑜𝑠(𝐶) = 𝑎 as explained in section 2.1. 

ii. Construct segment BD1 ⊥ line AC meeting it at D1.  Construct segment D1D2 ⊥ line BC 

meeting it at D2. Construct segment D2D3 ⊥ line AC meeting it at D3.  Continue this 

alternating construction of perpendiculars on lines BC and AC. Let the final segment be 

Dn−1Dn ⊥ line BC meeting it at Dn. Denote the perpendicular segments BD1, D1D2, 

D2D3,…, Dn−1Dn by p1, p2, p3 , … , pn . 
iii. Similarly, construct a segment AE1 ⊥ line CB (extension of line CB) meeting it at E1. 

Construct segment E1E2 ⊥ line CA (extension of line CA), meeting it at E2. Continue 
constructing perpendiculars alternately on CB’ and CA’. Let the final segment be 

En−1En. Denote the perpendicular segment AE1, E1E2, E2E3,…, En−1En by 

P1, P2, P3, … , Pn. 
iv. Let the m0th perpendicular be such that  pm0

> b   and the (m0  + 1)th perpendicular 

satisfies pm0+1 < b. 

v. A new relation emerges: (𝑎)
𝑟0
𝑞0 =

𝑏

𝑝𝑚0

  or (
𝑏

𝑝𝑚0

)

𝑞0
𝑟0

= 𝑎, where r0, q0 are rational 

quantities such that r0 < q0. Lengths of 𝑏 and 𝑎 are given and the length of the 

perpendicular pm0
 can be measured by a compass.  

vi. Repeat the construction of Figure 2 using this new triangle ∆ A'B'C' 

with  𝑐𝑜𝑠(∠ 𝐴′𝐶′𝐵′) = (𝑏/𝑝𝑚0
),  𝐴′𝐵′ =  1, right angle at B'. Apply the same 

perpendicular-dropping procedure to extract the next quotient  m1 . 
vii. Let the m1th perpendicular be such that 𝑝𝑚1

> 𝑎   and the  (𝑚1  + 1)th perpendicular 

satisfies 𝑝𝑚1+1 < 𝑎. 

viii. This yields a new relation (
𝑏

𝑝𝑚0

)

𝑟1
𝑞1

=
𝑎

𝑝𝑚1

 or (
𝑎

𝑝𝑚1

)

𝑞1
𝑟1

= (
𝑏

𝑝𝑚0

)  where r1, q1 are rational 

quantities such that r1 < q1. 

ix. Let the m2th perpendicular be such that 𝑝𝑚2
> (

𝑏

𝑝𝑚0

)   and the (m2  + 1)th 

perpendicular satisfies 𝑝𝑚2+1 < (
𝑏

𝑝𝑚2

). 

x. The process will continue ad infinitum and 

𝑥 = 𝑚0 +
1

𝑚1 +
1

𝑚2 +
1

𝑚3 + ⋯

 

where m0, m2, m3, . ., are positive integers [8]. 

    If a → 0 or a → 1, then the ∠C → π/2 or ∠C → 0 and it becomes difficult to draw ∆ ABC and 

perpendiculars on base BC and the hypotenuse. In such cases, write the equation 𝑎𝑥 = 𝑏 as 
(𝑎)−𝑥 = 1/𝑏 and locate m0 so that Pm0+1 > 1/b > Pm0

. Proceed as explained in steps v to x.  

 
2.3. Proof  

In ∆ ABD1, ∠ABD1 =  ∠C, line segment AB = 1, therefore, line segment BD1 = cos(C). In  
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∆BD1D2, ∠BD1D2 =  ∠C, therefore, line segment 𝐷1𝐷2 =  𝐵𝐷1𝑐𝑜𝑠(𝐶) =  𝑐𝑜𝑠2 (𝐶). Similarly, line 

segment 𝐷2𝐷3 =  𝑐𝑜𝑠3 (𝐶), line segment 𝐷3𝐷4 =  𝑐𝑜𝑠4  (𝐶), . .,  line segment 𝐷𝑛−1𝐷𝑛 =  𝑐𝑜𝑠𝑛  (𝐶). 
In the same way, line segment 𝐴𝐸1 =  𝑐𝑜𝑠−1(𝐶), line segment 𝐸1𝐸2 =  𝑐𝑜𝑠−2 (𝐶), line segment 

𝐸2𝐷3 =  𝑐𝑜𝑠−3 (𝐶), . ., line segment 𝐸𝑛−1𝐸𝑛 =  𝑐𝑜𝑠−𝑛 (𝐶). 
          If we consider cos(C) in our continued fractions, then the length of the first perpendicular  

𝐵𝐷1 pertains to power 1 of cos(C), length of second perpendicular 𝐷1𝐷2 to power 2 of cos(C), 

length of third perpendicular 𝐷2𝐷3 to power 3 of cos(C) and in this way, the length of the nth 

perpendicular 𝐷𝑛−1𝐷𝑛 to power 𝑛 of cos(C). 

          Similarly, if we consider, 1/𝑐𝑜𝑠(𝐶) in our continued fractions, then the length of the first 

perpendicular  𝐴𝐸1 pertains to power 1 of 1/𝑐𝑜𝑠(𝐶), length of the second perpendicular 𝐸1𝐸2 to 

power 2 of 1/cos(C), length of third perpendicular 𝐸2𝐸3 to power 3 of 1/cos(C) and in this way, 

length of the nth perpendicular 𝐸𝑛−1𝐸𝑛 to power 𝑛 of 1/cos(C). 

If 0 < a < 1, then according to the construction 𝑎 = 𝑐𝑜𝑠(𝐶) otherwise 1/𝑎 = 𝑐𝑜𝑠(𝐶). 
When 𝑝𝑚0

> 𝑏   and 𝑝𝑚0+1 < 𝑏, then 𝑏 corresponds to the length between 𝑝𝑚0
 and 𝑝𝑚0+1. In other 

words, it is a fraction 𝑟0/𝑞0 more than 𝑚0 where 𝑟0/𝑞0 < 1 so that 𝑥 = 𝑚0 + 𝑟0/𝑞0 and 

𝑎𝑚0+𝑟0/𝑞0 = 𝑏 and that yields ar0/q0 = b/am0 = b/pm0
 or (𝑏/𝑝𝑚0

)
𝑞0/𝑝0 = 𝑎 which is again an 

equation same in structure as 𝑎𝑥 = 𝑏. 
Figure 2 is reconstructed but with 𝑐𝑜𝑠(𝐶) = 𝑏/𝑝𝑚0

. For this equation also, there are 

perpendicular segments such that  𝑝𝑚1
> 𝑎   and 𝑝𝑚1+1 < 𝑎. Now 𝑞0/𝑟0 = 𝑚1 + 𝑟1/𝑞1 resulting in 

an equation (𝑎/𝑝𝑚1
)

𝑞1/𝑟1 = 𝑏/𝑝𝑚0
. The process will continue ad infinitum resulting in continued 

fractions. 
 

2.3 Explanation and Numerical Illustration   

In  𝑎𝑥 = 𝑏, let 0 < 𝑎 < 1. In geometric language, referring to Figure 2, which shows successive 

perpendiculars in a triangle ABC with a right angle at B and base BC, 𝑐𝑜𝑠 (𝐶) = 𝑎 —Which 

perpendicular has its length equal to b? If  𝑥 is an integer, which is easily identifiable by comparing 

the length 𝑏 with that perpendicular. If 𝑥 is not an integer, we can always find 𝑚0th and (𝑚0 +
1)the perpendicular such that the length of the 𝑥th perpendicular lies between them from the 

inequalities  𝑝𝑚0
> 𝑏 and  𝑝𝑚0+1 < 𝑏, where  𝑝𝑚0

 and  𝑝𝑚0+1 are lengths of 𝑚0th and (𝑚0 + 1)th 

perpendiculars. Let r0/q0 be such that   

           (𝑎)𝑚0+𝑟0/𝑞0 = (𝑏),                  (2.1) 

where 𝑟0/𝑞0 < 1 and 𝑟0 and 𝑞0 are positive integers and  

                      𝑥 = 𝑚0 +
𝑟0

𝑞0
.             (2.2) 

          In Equation (2.1), 𝑚0  has already been extracted and 𝑟0/𝑞0  needs extraction but the 

perpendicular corresponding to  𝑟0/𝑞0 < 1 does not correspond to a nonzero perpendicular.  But 

𝑞0/𝑟0 being more than 1 does correspond to a nonzero perpendicular, hence Equation (2,2) is written  

                              𝑥 = 𝑚0 +
1

𝑞0
𝑟0

.             (2.3) 

          This highlights the continued fraction form leading to the extraction of 𝑞0/𝑟0 by rewriting 

Equation (2.1) in exponent 𝑞0/𝑟0 :  

               𝑓
𝑞0
𝑟0 = 𝑔,         

 where 𝑓 = 𝑏/𝑝𝑚0
,  𝑔 = 𝑎,  𝑝𝑚0

= 𝑎𝑚0  and values of b  and 𝑎  are given, thus facilitating the 

construction of a right-angled triangle A’B ’C’ with 𝑐𝑜𝑠(𝐶’) = 𝑓 = 𝑏/𝑝𝑚0
 (base 𝑝𝑚0

 and hypotenuse 

𝑏). Let 𝑚1th and (𝑚1 + 1)th perpendicular such that the magnitude of the (q0/r0)th perpendicular 

lies between them from the inequalities  𝑝𝑚1
> 𝑔  and  𝑝𝑚1+1 < 𝑔,  where  𝑝𝑚1

 and  𝑝𝑚1+1  are 

lengths of 𝑚1th and (𝑚1 + 1)th perpendiculars. Let r1/q1 be such that   
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           (f)m1+r1/q1 = (g),                             (2.4) 

where 𝑟1/𝑞1 < 1 and 𝑟1  and 𝑞1 are positive integers. Thus, the value of an integer 𝑚1 is extracted 

and the value of  𝑞1/𝑟1 > 1 needs extraction. Consequently, the equation (2.4) takes the form  

𝑥 = 𝑚0 +
1

𝑚1 +
1
𝑞1
𝑟1

 . 

          Proceeding in this manner, 𝑚2, 𝑚3, … , 𝑚𝑗 can be extracted, yielding 

𝑥 = 𝑚0 +
1

𝑚1 +
1

𝑚2 +
1

𝑚3 + ⋯

 , 

and the larger the value of j, the more precise the result becomes. 

 
2.3.1 Numerical Illustration 

Let the given equation be 2𝑥 = 5.  This can be written (1/2)𝑥 = (1/5) so that we may construct a 

triangle ABC with base BC, 𝐴𝐵 = 1, angle 𝐵 = 𝜋/2 and 𝑐𝑜𝑠(𝐶) = 1/2. From geometry, 𝑥 lies 

between the 2nd and the third perpendicular, and that makes 𝑚0 = 2 and (1/2)2+𝑟0/𝑞0 = 1/5 or 

𝑥 = 2 +
𝑟0

𝑞0
= 2 +

1
𝑞0
𝑟0

, 

since 𝑟0/𝑞0 < 1 and does not correspond to any perpendicular 1, 2, 3,…That needs the extraction of 

𝑞0/𝑟0 > 1 and writing (1/2)2+𝑟0/𝑞0 = 5 in terms of the exponent of 𝑟0/𝑞0 :  

       

(
1

5𝑝2
)

𝑞0
𝑟0

 

=
1

2
 , 

where the magnitude of 𝑝2  is known from the construction. From the comparison of lengths of 

perpendiculars, it is found that ½ lies between the 3rd and 4th perpendiculars in the triangle with 

𝑐𝑜𝑠(𝐶’) = 1/5𝑝2  and that extracts 𝑚1 = 3. That yields  

                 

𝑥 = 2 +
1

3 +
1
𝑞1
𝑟1

 , 

  

leading to the equation (1/5𝑝2)3+𝑟1 / 𝑞1 = 1/2 or  

             

(
1

2𝑝3
’

)

𝑞1/𝑟1

=
1

5𝑝2
, 

 

where 𝑝3
’  is the magnitude of the third perpendicular. From the comparison of lengths of 

perpendiculars, it is found that 1/5𝑝2  lies between the 9th and 10th perpendiculars in the triangle 

with 𝑐𝑜𝑠(𝐶‘’)  = 1/5𝑝2 and that extracts 𝑚2 = 9. That yields 

         

𝑥 = 2 +
1

3 +
1

9 +
1
𝑞2
𝑟2

 . 
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          Stopping at the third stage and neglecting 𝑟2/𝑞2 , 𝑥  calculates as 2.321428571 whereas the 

actual x is 2.321928095 within .021 percent. That demonstrates the validity of the method.  
 

2.4. Computation and Construction of 𝒆𝒙 = 𝒃 by Geometric Construction  

 

2.4.1. Computation and Construction of Euler Number 𝒆  

Euler number is transcendental and not constructible by using a straight edge and compass. 

However, it can be approximated geometrically using the formula e equals, limit 𝑛 → ∞, 
(1 + 1/𝑛)𝑛 or n → ∞, 𝑒 =  {𝑛/(1 + 𝑛)}−𝑛. Set 𝑐𝑜𝑠(𝐶) = 𝑛/(𝑛 + 1) a right-angled triangle ABC 

can be constructed with base 𝐵𝐶 = 𝑛 and hypotenuse 𝐴𝐶 = 𝑛 + 1 with ∠ACB → 0.  Although n →
∞, is not practically feasible; an approximation can be obtained by choosing  n  as large as 

permitted by the size of the drawing sheet or the precision of the computing device (if implemented 
in software). 

  

Figure 3 Displaying construction and computation of e 

A brief description of the construction is as follows: Referring to Figure 3, construct triangle 

ABC with 𝑐𝑜𝑠(∠𝐴𝐶𝐵) = 𝑛/(𝑛 + 1). From A, drop a perpendicular AE1 to CB extended, meeting it 

at E1. From E1, drop a perpendicular E1E2 to CA extended, meeting it at  E2.  From E2, drop a 

perpendicular E2E3 to CB extended, meeting it at E3. Continue this process alternately until the nth 

perpendicular En−1En from En−1  meets CB extended at En. From similar triangles 𝐴𝐵𝐶,  𝐴𝐵𝐸1,
𝐸1𝐸2𝐸3 so on, line segment 𝐴𝐸1 = 𝑐𝑜𝑠−1(𝐶), 𝐸1𝐸2 = 𝑐𝑜𝑠−2(𝐶), 𝐸2𝐸3 = 𝑐𝑜𝑠−3(𝐶), …, 𝐸𝑛−1𝐸𝑛 =
𝑐𝑜𝑠−𝑛(𝐶), since line segment 𝐴𝐵 = 1. Therefore, 𝐸𝑛−1𝐸𝑛 = 𝑐𝑜𝑠−𝑛(𝐶) ≈ {𝑛/(𝑛 + 1)}−𝑛 .  

2.4.2. Computation and Construction of 𝒆𝒙 = 𝒃  

The geometric construction and computation of 𝑒𝑥 = 𝑏 follow the same procedure as that for 𝑎𝑥 =
𝑏 (Sections 2.2 and 2.4), with the following substitutions: 

•  Replace 𝑎 by 1/𝑒, 

•  Set 𝑐𝑜𝑠(∠𝐴𝐶𝐵) = 1/𝑒. 

Repeating the full details here would duplicate Sections 2.2 and 2.3 in toto and is therefore 

omitted. For the geometric construction and approximation of Euler’s number 𝑒, refer to Section 

2.4.1 and Figure 3. 

3. Comparison With the Euclidean Algorithm 
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3.1 Euclidean Algorithm  

i. The Euclidean algorithm is a general method applicable to fractions 𝑟/𝑞 where the 

process of division of 𝑞 by 𝑟 is possible and 𝑞, 𝑟 are positive integers. 

ii. It divides 𝑞 by 𝑟 so that 
𝑞

𝑟
= 𝑚0 +

𝑟1

𝑟
= 𝑚0 +

1
𝑟

𝑟1

. Now 𝑟1  divides 𝑟 so that 
𝑟

𝑟1
= 𝑚1 +

𝑟2

𝑟1
= 𝑚1 +

1
𝑟1
𝑟2

, thus 
𝑝

𝑞
= 𝑚0 +

1

𝑚1+
1

𝑟1
𝑟2

.  Continuing the process, 
𝑞

𝑟
 can be written 

𝑚0 +
1

𝑚1 +
1

𝑚2 +
1

𝑚3 + ⋯

,  

where  𝑚0, 𝑚2, 𝑚3, . ., are positive integers. 

iii. The algorithm’s applicability is limited to real rational quantities and polynomials. It can 

be made applicable to other functions when written in polynomials or in numerical 
values.  

 
3.2 Geometric Method 

i. The geometric method is a special method for continued fraction for obtaining the 

continued fraction of 𝑥 in the equation 𝑎𝑥 = 𝑏 or equivalently 𝑥 = 𝑙𝑛(𝑏)/𝑙𝑛(𝑎). 
ii. It uses the theory that in a right-angled ∆ ABC with base BC, ∠𝐴𝐵𝐶 = 𝜋/2, 

perpendicular segment AB=1  if from point B, a perpendicular 𝐵𝐷1 is drawn on line AC, 

𝐷1𝐷2 on BC, 𝐷2𝐷3 on AC, then 𝐵𝐷1 = 𝑐𝑜𝑠(𝐶), 𝐷1𝐷2 = 𝑐𝑜𝑠2(𝐶), 𝐷2𝐷3 =
𝑐𝑜𝑠2(𝐶), . . , 𝐷𝑛−1𝐷𝑛 = 𝑐𝑜𝑠𝑛(𝐶). Thus, a perpendicular segment denotes to a specific 

value of 𝑘 in 𝑐𝑜𝑠𝑘(𝐶).The given value of 𝑏 can then be found to exist between two 

perpendicular say 𝑚0 and 𝑚0 + 1  where 𝑏 = 𝑚0 + 𝑟0/𝑞0. 
iii. Thus 𝑏 which is a fraction with integer 𝑚0 (quotient) and as 𝑟0/𝑞0 remainder. It is 

tantamount to the division of the numerator by the denominator (of b). 

iv. Quotient (𝑚1) and reminder (𝑟1/𝑞1) of fraction 𝑞0/𝑟0 are extracted geometrically by 

constructing a right-angled triangle with an angle ∠𝐶 corresponding to 𝑐𝑜𝑠(𝐶) = 

𝑏/𝑝𝑚0
. The process is continued. 

v. The geometric method is the same in spirit as the Euclidean algorithm, with the 

difference that it involves exponents and the division takes place geometrically rather 
than symbolically. 

 

4. Nature of 𝒙 in 𝒂𝒙 = 𝒃 and 𝒆𝒙 = 𝒃  

 
Lemma 4.1: (Classical corollary of the Gelfond–Schneider theorem): If 𝑥 in 𝑎𝑥 = 𝑏 or equivalently 

𝑥 = 𝑙𝑛(𝑏)/𝑙𝑛(𝑎), is not rational, and 𝑎 > 0 and 𝑏 > 0 are algebraic with  𝑎 ≠ 1, and 𝑏 ≠ 1. Then 

x is transcendental.  

Proof: The following proof is a direct application of the classical Gelfond–Schneider theorem 

(proved independently by A. O. Gelfond in 1934 and T. Schneider in 1935 [4]. If 𝑥 is not rational, 

then there are two remaining possibilities, either 𝑥 is algebraic, irrational, or transcendental.  

Case 1: x is algebraic irrational. 

By the Gelfond–Schneider theorem, if 𝑎 is algebraic with a ≠ 0, 1 and 𝑥 is algebraic 

irrational, then 𝑎𝑥 is transcendental [4]. But we are given that 𝑏 is algebraic, so 𝑎𝑥 = 𝑏 cannot be 

transcendental. This contradiction shows 𝑥 cannot be algebraically irrational. 

Also 𝑥 is not rational according to the given condition. Therefore, 𝑥 must be transcendental. 

This proves lemma 4.1. 
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Clarifying remark 

The status of results obtained from general operations (addition, subtraction, multiplication, 

division) on two different transcendental numbers cannot be uniformly determined. However, the 

imposition of specific conditions that 𝑥 in 𝑎𝑥 = 𝑏 is not rational, and 𝑎 > 0 and 𝑏 > 0 are algebraic 

with  𝑎 ≠ 1, and 𝑏 ≠ 1 makes x transcendental as a corollary of Gelfond–Schneider theorem [4].  

 

Lemma 4.2: Using an unmarked straightedge and compass, let ∆ ABC be a right triangle 

with ∠𝐴𝐵𝐶 = 𝜋/2, base BC, and perpendicular AB = 1. From point B , drop a perpendicular 𝐵𝐷1 

to hypotenuse AC meeting it at  𝐷1. Then, from  𝐷1, drop a perpendicular 𝐷1𝐷2 to BC meeting it 

at 𝐷2 ; from  𝐷2, drop a perpendicular 𝐷2𝐷3 to AC meeting it at  𝐷3; and continue this process 

alternately. Then, for any integers  𝑛 >  𝑚 >  3  and  𝑝 >  𝑞 >  3, the ratio of two transcendental 

logarithms satisfies 

      

𝑙𝑛 (
𝐷𝑛−1𝐷𝑛−3
𝐷𝑚−1𝐷𝑚−3

)

𝑙𝑛 (
𝐷𝑝−1𝐷𝑝−3

𝐷𝑞−1𝐷𝑞−3
)

=
𝑛 − 𝑚

𝑝 − 𝑞
, 

Proof: Referring to Figure 2, the segment lengths on the hypotenuse AC are given by: 

           𝐷𝑛−1𝐷𝑛−3 = 𝐷𝑛−2𝐷𝑛−3𝑠𝑖𝑛(𝐶) = 𝑠𝑖𝑛(𝐶)𝑐𝑜𝑠𝑛−2(𝐶), 

           𝐷𝑚−1𝐷𝑛−3 = 𝐷𝑚−2𝐷𝑚−3𝑠𝑖𝑛(𝐶) = 𝑠𝑖𝑛(𝐶)𝑐𝑜𝑠𝑚−2(𝐶), 

Thus, 

            
𝐷𝑛−1𝐷𝑛−3

𝐷𝑚−1𝐷𝑛−3
= 𝑐𝑜𝑠𝑛−𝑚(𝐶), 

Taking the natural logarithm yields: 

                𝑛 − 𝑚 =
1

𝑙𝑛(𝑐𝑜𝑠 𝐶)
𝑙𝑛 (

𝐷𝑛−1𝐷𝑛−3

𝐷𝑚−1𝐷𝑛−3
).             (4.1)           

                 𝑝 − 𝑞 =
1

𝑙𝑛(𝑐𝑜𝑠 𝐶)
𝑙𝑛 (

𝐷𝑝−1𝐷𝑝−3

𝐷𝑚−1𝐷𝑛−3
).             (4.2) 

Dividing (4.1) by (4.2), we obtain  

                   
𝑛−𝑚

𝑝−𝑞
=

𝑙𝑛(
𝐷𝑛−1𝐷𝑛−3

𝐷𝑚−1𝐷𝑚−3
)

𝑙𝑛(
𝐷𝑝−1𝐷𝑝−3

𝐷𝑞−1𝐷𝑞−3
)

,               (4.3) 

although the numerator and denominator of the right-hand side of Equation (4.3) are both 

transcendental. That proves Lemma 4.2.  

Remark: By Lemma 4.1, when 𝑥 = 𝑙𝑛(𝑏)/𝑙𝑛(𝑎), is not rational, and a > 0 and b > 0 are algebraic 

with  a ≠ 1, and b ≠ 1, then 𝑥 is transcendental. However, in the present construction, the bases are 

geometrically related via  𝑎 =  𝑏𝑘  for some integer 𝑘 , due to the uniform scaling by 𝑐𝑜𝑠 𝐶.  This 

structural constraint forces the ratio of two transcendental logarithms to be rational — a non-trivial 

consequence of the geometry. This rational equality arises purely by construction: the iterative 
perpendicular process imposes algebraic dependence among the bases via uniform scaling by cos 

C, independent of general transcendence theory. 
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Lemma 4.3 (Classical corollary of the Lindemann–Weierstrass theorem):  If algebraic 𝑏 > 0 is a 

real algebraic number with  𝑏 ≠ 1, then 𝑥 in 𝑒 𝑥 = 𝑏, is transcendental.  

Proof:  
The following proof is a direct application of the classical Lindemann–Weierstrass theorem (proved 

by F. Lindemann in 1882 and generalised by K. Weierstrass in 1885): If α is a non-zero algebraic 

number, then 𝑒𝛼 is transcendental. 

            Suppose 𝑥 is rational, then 𝑏 = 𝑒 𝑥 is transcendental, contradicting to the given statement 

that b is algebraic. Thus, x can not be rational. 

Suppose x is algebraic, since  x  is a non-zero algebraic number, exis transcendental (by the 

Lindemann–Weierstrass theorem), again contradicting that  𝑏  is algebraic. Thus, 𝑥  cannot be 

algebraic. The only remaining possibility is that 𝑥  is transcendental. This proves Lemma 4.3. 

5. Convergence and the Rate of Convergence  
It is proved in Section 3 that the continued fraction generated by the geometric method is the 

standard simple continued fraction of the transcendental number  x =  logab. Since 𝑥  is irrational 

(in fact, transcendental by Lemma 4.1), classical theory guarantees that: 

i. The value of the continued fraction generated by the extracted quotients converges to x. 

(see [6]). 

ii. The error after 𝑛  steps is less than  1/kn
2  , where  kn  is the denominator (see [6]). 

iii. The denominators grow at least exponentially with  𝑛 , ensuring rapid convergence (see 

[6]). 

These are well-known properties of continued fractions for any irrational number. The 
novelty of this work lies not in discovering new convergence behaviour, but in constructing the 

partial quotients geometrically — using only compass and straightedge within a single right 

triangle. Where the Euclidean algorithm divides numbers symbolically, this method divides 
exponential scales geometrically, achieving the same mathematical outcome through pure 

construction. 

6. Results and conclusions  
The exponentiation of a real quantity a when  0 < 𝑎 < 1 i.e. 𝑎𝑥, for −∞ < 𝑥 < +∞ can be 

expressed geometrically in the form of cosx(C) using a straightedge and a compass. Construct a 

right-angled ∆ ABC, with base BC, ∠ABC = π/2, and perpendicular line segment AB=1. Let 

cos(ACB) = a. Successive perpendiculars are drawn on base BC and hypotenuse AC. Denote 

BD1, D1D2, D2D3, . ., as first, second, third perpendicular... with lengths p1 , p2, p3, …,  then 

𝑐𝑜𝑠𝑥(𝐶) = 𝑎𝑥 = 𝑝𝑥 . 

If 𝑥 is not an integer, suppose it lies between 𝑚0, and 𝑚0 + 1 where m0 is an integer. This 

can be detected when the magnitude of  𝑏 in the equation 𝑎𝑥 = 𝑏 satisfies  pm0
 < b < pm0+1. This 

identifies m0. Now consider 𝑥 = 𝑚0 + 𝑟0/𝑞0, where the fraction r0/q0 < 1. Then am0+r0/q0=b or 
 

(𝑝𝑚0
𝑎𝑟0/𝑞0) = 𝑏 

or 

(𝑏/𝑝𝑚0
)

𝑞0/𝑟0 = 𝑎. 

This equation is analogous to  𝑎𝑥 = 𝑏. The integer  𝑚1 in the equation  𝑞0/𝑟0 = 𝑚1 + 𝑟1/𝑞1 

can be found using the same process as for m0. Similarly, 𝑚2, 𝑚3, 𝑚4  can be extracted, resulting in 
transcendental 
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𝑥 = 𝑚0 +
1

𝑚1 +
1

𝑚2 +
1

𝑚3 + ⋯

, 

 

where m0, m1 , m2, .. are positive integers including zero. This continued fraction is infinite 

and non-terminating [8]. Therefore, the value of the transcendental 𝑥 can only be approximated by 

truncating the fraction at a finite number of terms, according to the desired precision. Thus, the 

geometric construction extracts the terms of the continued fraction and approximates the 
transcendental value but fails to yield its exact value. Like all other methods, it is a method of 

approximation.  
 

          We demonstrate how approximation is done in [S1]. In summary, for determining x by 

continued fraction, both a and b are assumed to satisfy 0 < 𝑎 < 1 and 0 < 𝑏 < 1.  The interactive 

figure displays the values of  𝑚0, 𝑚1  and 𝑚2 for the continued fraction  𝑥 = 𝑚0 +
1

𝑚1+
1

𝑚2
+.. .

, 

where 𝑥 =
𝑙𝑛(𝑏)

𝑙𝑛(𝑎)
. Writing 𝑥0 = 𝑚0, 𝑥1 = 𝑚0 +

1

𝑚1
,  𝑥2 = 𝑚0 +

1

𝑚1+
1

𝑚2

, and letting 𝑘0 = 1 the 

denominator of 𝑥0, 𝑘1 = 𝑚1   the denominator of 𝑥1, and 𝑘2 = 𝑚1𝑚2 + 1  the denominator of 𝑥2 

and actual 𝑥 =
𝑙𝑛(𝑏)

𝑙𝑛(𝑎)
,  it can be observed numerically from the interactive figure, in agreement with 

the known bounds for continued fractions, that |𝑥 − 𝑥0| <
1

𝑘0
2 , |𝑥 − 𝑥1| <

1

𝑘1
2  and |𝑥 − 𝑥2| <

1

𝑘2
2 . It 

can further be observed that 𝑘𝑛  grows exponentially with 𝑛, ensuring rapid convergence of the 
continued-fraction approximation. 

          The interactive file not only provides continued fractions approximations for ax =  b 

(equivalently x =  ln(b)/ln(a), but also stimulates curiosity and a sense of wonder, showing how 
calculations that normally require logarithmic tables or calculators can be performed geometrically 

using right-angled triangles and perpendiculars. Observing this simple yet revealing method 

encourages one to explore whether the same approach can be applied to other problems, thereby 
planting the seed for further investigation and research. 

 

7. Supplementary Electronic Material  
      [ICFE] An interactive HTML file.  
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